| Category | Assignment | Subject | Science |
|---|---|---|---|
| University | University College Cork (UCC) | Module Title | BL6024 Quantitative Skills for Biologists using R |
Total Marks 200
Assignment - short assignment 1 (40 Marks)
Assignment - short assignment 2 (40 Marks)
Assignment - long assignment (120 Marks)
Quantitative data analysis is fundamental to contemporary biological research. Advances in experimental techniques and data collection methods have resulted in large, complex datasets that require robust statistical and computational approaches for meaningful interpretation.
This assignment demonstrates the application of quantitative skills using R to analyze a biological dataset. the statistical programming language R has become one of the most widely used tools in biological sciences due to its flexibility, open-source nature, and extensive range of packages specifically developed for biological and ecological analysis......More
Declaration............................................................................................................................................1
1.Introduction...........................................................................................................................................3
2. Learning Outcomes Addressed .............................................................................................................4
3. Description of the Biological Dataset ...................................................................................................4
Variables...............................................................................................................................................4
4. Data Import and Initial Exploration......................................................................................................4
5. Data Cleaning and Preparation .............................................................................................................5
6. Exploratory Data Visualisation.............................................................................................................5
6.1 Scatter Plot......................................................................................................................................5
6.2 Group Comparison..........................................................................................................................5
7. Descriptive Statistics.............................................................................................................................5
8. Statistical Modelling .............................................................................................................................6
8.1 Linear Regression Analysis ............................................................................................................6
8.2 Interpretation of Regression Coefficients .......................................................................................6
9. Model Diagnostics................................................................................................................................6
10. Hypothesis Testing..............................................................................................................................6
11. Biological Interpretation .....................................................................................................................7
12. Reproducibility and Good Coding Practice ........................................................................................7
13. Limitations of the Analysis.................................................................................................................7
15. Extended Statistical Reasoning in Biological Context........................................................................7
16. Alternative Statistical Approaches......................................................................................................8
16.1 Analysis of Variance (ANOVA)...................................................................................................8
16.2 Non-linear Models........................................................................................................................8
17. Visualisation Using Advanced R Techniques.....................................................................................8
18. Relevance to Biological Research and Professional Practice .............................................................9
19. Ethical Considerations in Quantitative Biological Research ..............................................................9
20. Reflection on Learning and Skill Development..................................................................................9
21. Limitations and Opportunities for Further Research ........................................................................10
22. Extended Conclusion ........................................................................................................................10
Appendix A: Annotated R Script (Explanation).....................................................................................10
References...............................................................................................................................................10
UPTO55%
Avail The Benefit Today!
Fill Out the Order Form for Free Access
Workingment Ireland Assignment Helper proudly offers expert academic support across a wide range of Life Sciences and interdisciplinary modules. In addition to core programmes, we provide structured sample solutions, assessment guidance, and concept-based academic assistance for specialised modules such as BL6019 Ecological Applications of Geographical Information Systems, BL6024 Quantitative Skills for Biologists using R, AP3039 Evolutionary Psychology, BL4004 Frontiers in Biology, BL3004 Research Skills in Biology, and ZY4021 Evolutionary Ecology.
Our support is aligned with university learning outcomes, assessment criteria, and marking rubrics, ensuring clarity of concepts, logical structure, and academic rigour. All samples are developed strictly for educational and reference purposes, helping students understand expectations, methodologies, and analytical approaches while maintaining full compliance with academic integrity standards.
Hire Assignment Helper Today!
Let's Book Your Work with Our Expert and Get High-Quality Content